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Preface

The Release-1 CERES Algorithm Theoretical Basis Document (ATBD) is a compilation of the
techniques and processes that constitute the prototype data analysis scheme for the Clouds and the
Earth’s Radiant Energy System (CERES), a key component of NASA’s Mission to Planet Earth. The
scientific bases for this project and the methodologies used in the data analysis system are also
explained in the ATBD. The CERES ATBD comprises 11 subsystems of various sizes and complexi-
ties. The ATBD for each subsystem has been reviewed by three or four independently selected univer-
sity, NASA, and NOAA scientists. In addition to the written reviews, each subsystem ATBD was
reviewed during oral presentations given to a six-member scientific peer review panel at Goddard Space
Flight Center during May 1994. Both sets of reviews, oral and written, determined that the CERES
ATBD was sufficiently mature for use in providing archived Earth Observing System (EOS) data prod-
ucts. The CERES Science Team completed revisions of the ATBD to satisfy all reviewer comments.
Because the Release-1 CERES ATBD will serve as the reference for all of the initial CERES data anal-
ysis algorithms and product generation, it is published here as a NASA Reference Publication.

Due to its extreme length, this NASA Reference Publication comprises four volumes that divide the
CERES ATBD at natural break points between particular subsystems. These four volumes are

I: Overviews
CERES Algorithm Overview
Subsystem 0. CERES Data Processing System Objectives and Architecture

II: Geolocation, Calibration, and ERBE-Like Analyses
Subsystem 1.0. Instrument Geolocate and Calibrate Earth Radiances
Subsystem 2.0. ERBE-Like Inversion to Instantaneous TOA and Surface Fluxes
Subsystem 3.0. ERBE-Like Averaging to Monthly TOA

III: Cloud Analyses and Determination of Improved Top of Atmosphere Fluxes
Subsystem 4.0. Overview of Cloud Retrieval and Radiative Flux Inversion
Subsystem 4.1. Imager Clear-Sky Determination and Cloud Detection
Subsystem 4.2. Imager Cloud Height Determination
Subsystem 4.3. Cloud Optical Property Retrieval
Subsystem 4.4. Convolution of Imager Cloud Properties With CERES Footprint Point Spread

Function
Subsystem 4.5. CERES Inversion to Instantaneous TOA Fluxes
Subsystem 4.6. Empirical Estimates of Shortwave and Longwave Surface Radiation Budget

Involving CERES Measurements

IV: Determination of Surface and Atmosphere Fluxes and Temporally and Spatially Averaged
Products

Subsystem 5.0. Compute Surface and Atmospheric Fluxes
Subsystem 6.0. Grid Single Satellite Fluxes and Clouds and Compute Spatial Averages
Subsystem 7.0. Time Interpolation and Synoptic Flux Computation for Single and Multiple

Satellites
Subsystem 8.0. Monthly Regional, Zonal, and Global Radiation Fluxes and Cloud Properties
Subsystem 9.0. Grid TOA and Surface Fluxes for Instantaneous Surface Product
Subsystem 10.0. Monthly Regional TOA and Surface Radiation Budget
Subsystem 11.0. Update Clear Reflectance, Temperature History (CHR)
Subsystem 12.0. Regrid Humidity and Temperature Fields

The CERES Science Team serves as the editor for the entire document. A complete list of Science
Team members is given below. Different groups of individuals prepared the various subsections that
constitute the CERES ATBD. Thus, references to a particular subsection of the ATBD should specify
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the subsection number, authors, and page numbers. Questions regarding the content of a given subsec-
tion should be directed to the appropriate first or second author. No attempt was made to make the over-
all document stylistically consistent.

The CERES Science Team is an international group led by 2 principal investigators and 19 coinves-
tigators. The team members and their institutions are listed below.

CERES Science Team

Bruce A. Wielicki, Interdisciplinary Principal Investigator
Bruce R. Barkstrom, Instrument Principal Investigator

Atmospheric Sciences Division
NASA Langley Research Center
Hampton, Virginia 23681-0001

Coinvestigators

Bryan A. Baum
Atmospheric Sciences Division
NASA Langley Research Center
Hampton, Virginia 23681-0001

Maurice Blackmon
Climate Research Division

NOAA Research Laboratory
Boulder, Colorado 80303

Robert D. Cess
Institute for Terrestrial & Planetary Atmospheres

Marine Sciences Research Center
State University of New York

Stony Brook, New York 11794-5000

Thomas P. Charlock
Atmospheric Sciences Division

NASA Langley Research Division
Hampton, Virginia 23681-0001

James A. Coakley
Oregon State University

Department of Atmospheric Sciences
Corvallis, Oregon 97331-2209

Dominique A. Crommelynck
Institute Royal Meteorologique

B-1180 Bruxelles
Belgium
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Richard N. Green
Atmospheric Sciences Division
NASA Langley Research Center
Hampton, Virginia 23681-0001

Robert Kandel
Laboratoire de Meteorologie Dynamique

Ecole Polytechnique
91128 Palaiseau

France

Michael D. King
Goddard Space Flight Center
Greenbelt, Maryland 20771

Robert B. Lee III
Atmospheric Sciences Division
NASA Langley Research Center
Hampton, Virginia 23681-0001

A. James Miller
NOAA/NWS

5200 Auth Road
Camp Springs, Maryland 20233

Patrick Minnis
Atmospheric Sciences Division
NASA Langley Research Center
Hampton, Virginia 23681-0001

Veerabhadran Ramanathan
Scripps Institution of Oceanography
University of California-San Diego

La Jolla, California 92093-0239

David R. Randall
Colorado State University

Department of Atmospheric Science
Foothills Campus, Laporte Avenue

Fort Collins, Colorado 80523

G. Louis Smith
Atmospheric Sciences Division
NASA Langley Research Center
Hampton, Virginia 23681-0001
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Institute of Atmospheric Sciences
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Nomenclature

Acronyms

ADEOS Advanced Earth Observing System

ADM Angular Distribution Model

AIRS Atmospheric Infrared Sounder (EOS-AM)

AMSU Advanced Microwave Sounding Unit (EOS-PM)

APD Aerosol Profile Data

APID Application Identifier

ARESE ARM Enhanced Shortwave Experiment

ARM Atmospheric Radiation Measurement

ASOS Automated Surface Observing Sites

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

ASTEX Atlantic Stratocumulus Transition Experiment

ASTR Atmospheric Structures

ATBD Algorithm Theoretical Basis Document

AVG Monthly Regional, Average Radiative Fluxes and Clouds (CERES Archival Data
Product)

AVHRR Advanced Very High Resolution Radiometer

BDS Bidirectional Scan (CERES Archival Data Product)

BRIE Best Regional Integral Estimate

BSRN Baseline Surface Radiation Network

BTD Brightness Temperature Difference(s)

CCD Charge Coupled Device

CCSDS Consultative Committee for Space Data Systems

CEPEX Central Equatorial Pacific Experiment

CERES Clouds and the Earth’s Radiant Energy System

CID Cloud Imager Data

CLAVR Clouds from AVHRR

CLS Constrained Least Squares

COPRS Cloud Optical Property Retrieval System

CPR Cloud Profiling Radar

CRH Clear Reflectance, Temperature History (CERES Archival Data Product)

CRS Single Satellite CERES Footprint, Radiative Fluxes and Clouds (CERES Archival
Data Product)

DAAC Distributed Active Archive Center

DAC Digital-Analog Converter

DB Database

DFD Data Flow Diagram

DLF Downward Longwave Flux



x

DMSP Defense Meteorological Satellite Program

EADM ERBE-Like Albedo Directional Model (CERES Input Data Product)

ECA Earth Central Angle

ECLIPS Experimental Cloud Lidar Pilot Study

ECMWF European Centre for Medium-Range Weather Forecasts

EDDB ERBE-Like Daily Data Base (CERES Archival Data Product)

EID9 ERBE-Like Internal Data Product 9 (CERES Internal Data Product)

EOS Earth Observing System

EOSDIS Earth Observing System Data Information System

EOS-AM EOS Morning Crossing Mission

EOS-PM EOS Afternoon Crossing Mission

ENSO El Niño/Southern Oscillation

ENVISAT Environmental Satellite

EPHANC Ephemeris and Ancillary (CERES Input Data Product)

ERB Earth Radiation Budget

ERBE Earth Radiation Budget Experiment

ERBS Earth Radiation Budget Satellite

ESA European Space Agency

ES4 ERBE-Like S4 Data Product (CERES Archival Data Product)

ES4G ERBE-Like S4G Data Product (CERES Archival Data Product)

ES8 ERBE-Like S8 Data Product (CERES Archival Data Product)

ES9 ERBE-Like S9 Data Product (CERES Archival Data Product)

FLOP Floating Point Operation

FIRE First ISCCP Regional Experiment

FIRE II IFO First ISCCP Regional Experiment II Intensive Field Observations

FOV Field of View

FSW Hourly Gridded Single Satellite Fluxes and Clouds (CERES Archival Data Product)

FTM Functional Test Model

GAC Global Area Coverage (AVHRR data mode)

GAP Gridded Atmospheric Product (CERES Input Data Product)

GCIP GEWEX Continental-Phase International Project

GCM General Circulation Model

GEBA Global Energy Balance Archive

GEO ISSCP Radiances (CERES Input Data Product)

GEWEX Global Energy and Water Cycle Experiment

GLAS Geoscience Laser Altimetry System

GMS Geostationary Meteorological Satellite

GOES Geostationary Operational Environmental Satellite

HBTM Hybrid Bispectral Threshold Method



xi

HIRS High-Resolution Infrared Radiation Sounder

HIS High-Resolution Interferometer Sounder

ICM Internal Calibration Module

ICRCCM Intercomparison of Radiation Codes in Climate Models

ID Identification

IEEE Institute of Electrical and Electronics Engineers

IES Instrument Earth Scans (CERES Internal Data Product)

IFO Intensive Field Observation

INSAT Indian Satellite

IOP Intensive Observing Period

IR Infrared

IRIS Infrared Interferometer Spectrometer

ISCCP International Satellite Cloud Climatology Project

ISS Integrated Sounding System

IWP Ice Water Path

LAC Local Area Coverage (AVHRR data mode)

LaRC Langley Research Center

LBC Laser Beam Ceilometer

LBTM Layer Bispectral Threshold Method

Lidar Light Detection and Ranging

LITE Lidar In-Space Technology Experiment

Lowtran 7 Low-Resolution Transmittance (Radiative Transfer Code)

LW Longwave

LWP Liquid Water Path

LWRE Longwave Radiant Excitance

MAM Mirror Attenuator Mosaic

MC Mostly Cloudy

MCR Microwave Cloud Radiometer

METEOSAT Meteorological Operational Satellite (European)

METSAT Meteorological Satellite

MFLOP Million FLOP

MIMR Multifrequency Imaging Microwave Radiometer

MISR Multiangle Imaging Spectroradiometer

MLE Maximum Likelihood Estimate

MOA Meteorology Ozone and Aerosol

MODIS Moderate-Resolution Imaging Spectroradiometer

MSMR Multispectral, multiresolution

MTSA Monthly Time and Space Averaging

MWH Microwave Humidity



xii

MWP Microwave Water Path

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NESDIS National Environmental Satellite, Data, and Information Service

NIR Near Infrared

NMC National Meteorological Center

NOAA National Oceanic and Atmospheric Administration

NWP Numerical Weather Prediction

OLR Outgoing Longwave Radiation

OPD Ozone Profile Data (CERES Input Data Product)

OV Overcast

PC Partly Cloudy

POLDER Polarization of Directionality of Earth’s Reflectances

PRT Platinum Resistance Thermometer

PSF Point Spread Function

PW Precipitable Water

RAPS Rotating Azimuth Plane Scan

RPM Radiance Pairs Method

RTM Radiometer Test Model

SAB Sorting by Angular Bins

SAGE Stratospheric Aerosol and Gas Experiment

SARB Surface and Atmospheric Radiation Budget Working Group

SDCD Solar Distance Correction and Declination

SFC Hourly Gridded Single Satellite TOA and Surface Fluxes (CERES Archival
Data Product)

SHEBA Surface Heat Budget in the Arctic

SPECTRE Spectral Radiance Experiment

SRB Surface Radiation Budget

SRBAVG Surface Radiation Budget Average (CERES Archival Data Product)

SSF Single Satellite CERES Footprint TOA and Surface Fluxes, Clouds

SSMI Special Sensor Microwave Imager

SST Sea Surface Temperature

SURFMAP Surface Properties and Maps (CERES Input Product)

SW Shortwave

SWICS Shortwave Internal Calibration Source

SWRE Shortwave Radiant Excitance

SYN Synoptic Radiative Fluxes and Clouds (CERES Archival Data Product)

SZA Solar Zenith Angle

THIR Temperature/Humidity Infrared Radiometer (Nimbus)



xiii

TIROS Television Infrared Observation Satellite

TISA Time Interpolation and Spatial Averaging Working Group

TMI TRMM Microwave Imager

TOA Top of the Atmosphere

TOGA Tropical Ocean Global Atmosphere

TOMS Total Ozone Mapping Spectrometer

TOVS TIROS Operational Vertical Sounder

TRMM Tropical Rainfall Measuring Mission

TSA Time-Space Averaging

UAV Unmanned Aerospace Vehicle

UT Universal Time

UTC Universal Time Code

VAS VISSR Atmospheric Sounder (GOES)

VIRS Visible Infrared Scanner

VISSR Visible and Infrared Spin Scan Radiometer

WCRP World Climate Research Program

WG Working Group

Win Window

WN Window

WMO World Meteorological Organization

ZAVG Monthly Zonal and Global Average Radiative Fluxes and Clouds (CERES Archival
Data Product)

Symbols

A atmospheric absorptance

Bλ(T) Planck function

C cloud fractional area coverage

CF2Cl2 dichlorofluorocarbon

CFCl3 trichlorofluorocarbon

CH4 methane

CO2 carbon dioxide

D total number of days in the month

De cloud particle equivalent diameter (for ice clouds)

Eo solar constant or solar irradiance

F flux

f fraction

Ga atmospheric greenhouse effect

g cloud asymmetry parameter

H2O water vapor



xiv

I radiance

i scene type

mi imaginary refractive index

angular momentum vector

N2O nitrous oxide

O3 ozone

P point spread function

p pressure

Qa absorption efficiency

Qe extinction efficiency

Qs scattering efficiency

R anisotropic reflectance factor

rE radius of the Earth

re effective cloud droplet radius (for water clouds)

rh column-averaged relative humidity

So summed solar incident SW flux

integrated solar incident SW flux

T temperature

TB blackbody temperature

t time or transmittance

Wliq liquid water path

w precipitable water

satellite position at to
x, y, z satellite position vector components

satellite velocity vector components

z altitude

ztop altitude at top of atmosphere

α albedo or cone angle

β cross-scan angle

γ Earth central angle

γat along-track angle

γct cross-track angle

δ along-scan angle

ε emittance

Θ colatitude of satellite

θ viewing zenith angle

θo solar zenith angle

λ wavelength

µ viewing zenith angle cosine

N̂

So′

x̂o

ẋ ẏ ż, ,
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µo solar zenith angle cosine

ν wave number

ρ bidirectional reflectance

τ optical depth

τaer (p) spectral optical depth profiles of aerosols

spectral optical depth profiles of water vapor

spectral optical depth profiles of ozone

Φ longitude of satellite

φ azimuth angle

single-scattering albedo

Subscripts:

c cloud

cb cloud base

ce cloud effective

cld cloud

cs clear sky

ct cloud top

ice ice water

lc lower cloud

liq liquid water

s surface

uc upper cloud

λ spectral wavelength

Units

AU astronomical unit

cm centimeter

cm-sec−1 centimeter per second

count count

day day, Julian date

deg degree

deg-sec−1 degree per second

DU Dobson unit

erg-sec−1 erg per second

fraction fraction (range of 0–1)

g gram

g-cm−2 gram per square centimeter

g-g−1 gram per gram

g-m−2 gram per square meter

τH2Oλ p( )

τO3
p( )

ω̃o
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h hour

hPa hectopascal

K Kelvin

kg kilogram

kg-m−2 kilogram per square meter

km kilometer

km-sec−1 kilometer per second

m meter

mm millimeter

µm micrometer, micron

N/A not applicable, none, unitless, dimensionless

ohm-cm−1 ohm per centimeter

percent percent (range of 0–100)

rad radian

rad-sec−1 radian per second

sec second

sr−1 per steradian

W watt

W-m−2 watt per square meter

W-m−2sr−1 watt per square meter per steradian

W-m−2sr−1µm−1 watt per square meter per steradian per micrometer
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Subsystem 4.0 Top Level Data Flow Diagram
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4.1. Imager Clear-Sky Determination and Cloud Detection

4.1.1. Overview

This document outlines the methodology for the CERES Release 1 global cloud mask. The cloud
mask will be applied to the appropriate imager data stream for TRMM or EOS (VIRS or MODIS,
respectively). More precisely, the goal of this effort is to determine those imager pixels that are un-
obstructed between the top of atmosphere (TOA) and the surface. The output from this algorithm is a
pixel-level mask that includes information about which cloud masking tests were applied, whether each
test did or did not indicate cloud, and a final decision of whether cloud was or was not present for each
pixel.

The cloud mask is being designed for the narrowband channels on both the AVHRR and VIRS
instruments. The additional capabilities afforded by the MODIS instrument will be addressed in
Release 2 of this document. The members of the CERES cloud mask development team are closely
coordinating their activities with the MODIS cloud mask algorithm development. Therefore, close coor-
dination between the CERES and MODIS efforts will be maintained.

The CERES cloud masking algorithm will rely heavily upon a rich heritage of both NASA and
NOAA experience with global data analysis. Initial algorithm design will incorporate the approaches
used by ISCCP (International Satellite Cloud Climatology Project) (Rossow and Garder 1993), CLAVR
(Clouds from AVHRR) (Stowe et al. 1991), and SERCAA (Support of Environmental Requirements for
Cloud Analysis and Archive). The ISCCP algorithms are based upon two channels, one in the visible
wavelength region and one in the infrared. The CLAVR approach uses all five channels of the AVHRR
instrument. The CLAVR multispectral threshold approach with narrowband channel difference and
ratio tests will be used, including dynamic threshold specification with clear-sky radiation statistics. The
SERCAA algorithm is operational at the Phillips Laboratory, Hanscom Air Force Base, and uses all five
AVHRR radiometric channels. The SERCAA is sponsored jointly by the Department of Defense,
Department of Energy, and Environmental Protection Agency Strategic Environmental Research and
Development Program. When appropriate, the spatial coherence method (Coakley and Bretherton 1982)
will be used to improve the clear-sky spectral values. Artificial intelligence classification approaches
will be applied for complex scene analysis, especially in polar, rugged terrain, and coastal regions.

The cloud mask algorithm will be tested on two months of global AVHRR GAC data. It will be
modified as needed for Release 2 and then delivered for use with VIRS data on the TRMM mission.

4.1.2. Data and Assumptions

4.1.2.1. Assumptions

Anyone who has worked with data measured in the field quickly comes to realize that the real world
is less than perfect. A number of assumptions may be listed that attempt to place boundaries on the
cloud mask task.

1. Satellite data used as input to the cloud mask algorithm is calibrated.
2. Satellite level 1-B data, for some imaging instruments, may be striped (like the GOES scanner) or

have some “smearing” at high viewing scan angles. We assume that the data contains no striping or
smearing.

3. The mask will be provided for “good” data only, i.e., for those narrowband channels that have radi-
ometric integrity. For instance, the AVHRR 3.7-µm channel is sometimes too noisy to permit accu-
rate analysis of the radiometric data. This assumption implies that there may be holes in the mask
if the data are incomplete.

4. The system level integration issues associated with implementation of this algorithm will not be
raised in this subsystem document.
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5. Sea surface temperature, surface snow/ice coverage, and operational National Meteorological
Center gridded analysis products are assumed to be available for the operational cloud mask
algorithm.

6. Smoke from forest fires, dust storms over deserts, and other surface phenomena that result in
obstructing the field of view between the surface and the satellite will be considered as “cloud” if
such pixels pass the threshold tests. When new tests are developed that distinguish between these
phenomena, they will be incorporated into the algorithm.

4.1.2.1.1. Input data. The primary input data sets for subsystem 4.1 are the AVHRR GAC (global
area coverage) satellite data and the following ancillary data sets:

• 1-min resolution coastline map, with lakes, rivers, islands, state/country boundaries

• 10-min resolution topographical map (see section 4.1.5.1. for further information)

• 10-min resolution ecosystem map

• 18-km resolution U.S. Navy/NOAA weekly Sea Ice Product

• 150-km or better resolution weekly NOAA Snow Data Product

• NMC gridded meteorological analysis product

• NOAA gridded weekly sea surface temperature product

The spatial resolution of the AVHRR GAC data is about 4 km at nadir. The spectral data include
AVHRR channels 1 (0.55–0.68 µm), 2 (0.725–1.1 µm), 3 (3.55–3.93 µm), 4 (10.5–11.5 µm), and
5 (11.5–12.5 µm), which include visible, near-infrared, and infrared window regions. The NOAA-11
central wave numbers for the AVHRR IR channels are (see Kidwell 1991)

The values shown in Table 4.1-1 are slightly different for other sensors in this series of instruments.
The VIRS instrument has a 720-km swath width with spectral measurements at channels 1 (0.63
±0.05 µm), 2 (1.60 ±0.03 µm), 3 (3.75 ±0.19 µm), 4 (10.80 ±0.5 µm), and 5 (12.00 ±0.5 µm).

4.1.2.1.2. Output data. The output from the cloud mask algorithm will be a pixel by pixel product;
i.e., a cloud mask will be derived for each imager pixel. The mask will be derived for the highest spatial
resolution data available. There will be a final decision as to whether the pixel was obstructed or not that
will be based upon the various cloud mask tests applied during the course of the algorithm. The final
obstruction/no obstruction decision is stored in the variable denoted by “cloud fraction” in the imager
pixel output data structure (Table 4.4-4). For the VIRS instrument, the cloud fraction will be either a “0”
or a “1.” For validation purposes only, a separate output data structure will be implemented that stores
the results from the individual tests. If there are 10 tests applied to identify cloud, there will be 10 results
saved for each pixel.

Table 4.1-1. Central Wave Numbers as a Function of Temperature for the
NOAA-11 AVHRR NIR and IR Channels

Temperature Range (K) Ch 3 (cm−1) Ch 4 (cm−1) Ch 5 (cm−1)

180-225 2663.50 926.80 837.75
225-275 2668.15 927.34 838.08
275-320 2671.40 927.80 838.40
270-310 2670.95 927.73 838.35
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4.1.3. Cloud Masking Algorithms

4.1.3.1. Overview

Clouds generally are characterized by higher albedos and lower temperatures than the underlying
surface. However, there are numerous conditions when this characterization is inappropriate, most nota-
bly over snow and ice. Of the cloud types, cirrus, low stratus, and small cumulus are the most difficult to
detect. Likewise, cloud edges are difficult to recognize when they do not completely fill the field of
view (FOV) of the imager pixel. The cloud mask effort builds upon operational experience of several
groups that will now be discussed.

The NOAA CLAVR algorithm (Phase I) uses all five channels of AVHRR to derive a global cloud
mask (Stowe et al. 1991). It examines multispectral information, channel differences, and spatial differ-
ences and then employs a series of sequential decision tree tests. Cloud-free, mixed (variable cloudy),
and cloudy regions are identified for 2 × 2 GAC pixel arrays. If all four pixels in the array fail all the
cloud tests, then the array is labeled as cloud-free (0% cloudy); if all four pixels satisfy just one of the
cloud tests, then the array is labeled as 100% cloudy. If one to three pixels satisfy a cloud test, then the
array is labeled as mixed and assigned an arbitrary value of 50% cloudy. If all four pixels of a mixed or
cloudy array satisfy a clear-restoral test (required for snow/ice, ocean specular reflection, and bright
desert surfaces) then the pixel array is reclassified as “restored-clear” (0% cloudy). The set of cloud
tests is subdivided into daytime ocean scenes, daytime land scenes, nighttime ocean scenes, and night-
time land scenes.

Subsequent phases of CLAVR, now under development, will use dynamic clear/cloud thresholds
predicted from the angular pattern observed from the clear sky radiance statistics of the previous 9-day
repeat cycle of the NOAA satellite for a mapped 1° equal area grid cell (Stowe et al. 1994). As a further
modification, CLAVR will include pixel by pixel classification based upon different threshold tests to
separate clear from cloud contaminated pixels, and to separate cloud contaminated pixels into partial
and total (overcast) cover. Cloud contaminated pixels will be radiatively “typed” as belonging to low
stratus, thin cirrus, and deep convective cloud systems. A fourth type is middle mixed which includes
all other cloud types.

The International Satellite Cloud Climatology Project (ISCCP) cloud masking algorithm is
described by Rossow (1989), Rossow and Gardner (1993), and Seze and Rossow (1991a, b). Only two
channels are used, the narrowband VIS (0.6 µm) and the IR (11 µm). Each observed radiance value is
compared against its corresponding Clear-Sky Composite value. This step uses VIS radiances, not VIS
reflectances. Clouds are assumed to be detected only when they alter the radiances by more than the
uncertainty in the clear values. In this way the “threshold” for cloud detection is the magnitude of the
uncertainty in the clear radiance estimates. As such this algorithm is not a constant threshold method
such as used in Phase I of the CLAVR algorithm.

The ISCCP algorithm is based on the premise that the observed VIS and IR radiances are caused by
only two types of conditions, “cloudy” and “clear,” and that the ranges of radiances and their variability
that are associated with these two conditions do not overlap (Rossow and Garder 1993). As a result, the
algorithm is based upon thresholds, where a pixel is classified as “cloudy” only if at least one radiance
value is distinct from the inferred “clear” value by an amount larger than the uncertainty in that “clear”
value. The uncertainty can be caused both by measurement errors and by natural variability. This algo-
rithm is constructed to be “cloud-conservative,” minimizing false cloud detections but missing clouds
that resemble clear conditions.

The ISCCP cloud-detection algorithm consists of five steps (Rossow and Garder 1993):

1. Space contrast test on a single IR image
2. Time contrast test on three consecutive IR images at constant diurnal phase
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3. Cumulation of space/time statistics for IR and VIS images
4. Construction of clear-sky composites for IR and VIS every 5 days at each diurnal phase and loca-

tion
5. Radiance threshold for IR and VIS for each pixel

Parts of the ISCCP scheme will be incorporated into the CERES cloud mask. Some modifications are
necessary since all the AVHRR channels will be used, not just the visible and infrared channels
(AVHRR channels 1 and 4).

The Support of Environmental Requirements for Cloud Analysis and Archive (SERCAA) algorithm
from the Air Force uses multispectral AVHRR data to derive a global cloud mask. The SERCAA cloud
decision tree consists of a series of cloud tests and background filter tests to identify cloudy and clear
scenes using multispectral data and empirical thresholds. The algorithm is performed on a pixel-by-
pixel basis. Percent albedo of channel 1 and channel 2 used in SERCAA has been changed to
reflectance for CERES analysis.

The spatial coherence method (Coakley and Bretherton 1982) is especially useful in determining
clear and cloudy sky radiances. It is applicable to single-layered and sometimes multilayered cloud sys-
tems that extend over moderately large regions, greater than 250 km × 250 km, and which have com-
pletely cloudy and completely clear pixels. Using the local spatial structure of the IR radiances,
difficulties arise when interpreting situations involving multilayered cloud systems, subpixel-sized
clouds, and clouds with variable emissivities.

4.1.3.2. ISCCP Space Contrast Test

This test, described in Rossow and Garder (1993), is similar to that of spatial coherence in that it is
applied only to IR brightness temperatures. It is based upon the fact that clear pixels tend to have higher
temperatures than cloudy pixels and to exhibit less spatial variability. First a small local region is
defined, composed of pixels with the same ecosystem. The spatial domain is approximately
450 km × 450 km over ocean, 90 km × 90 km over ice-covered water, and 90 km × 90 km over land.
The pixel in the local region with the largest IR (11-µm) brightness temperature (TBmax) is found, con-
sistent with the spatial coherence test. All pixels with temperatures lower than the spatial contrast
threshold defined by

(4.1-1)

are labeled as cloudy; all others are labeled as “undecided.” Since cloud variability can be as small as
surface variability, values of Thresholdcs = 3.5 K are chosen over ocean and Thresholdcs = 6.5 K over
both ice-covered water and land. Note that not only is it important that the class of pixels be identical
(land or ocean), but also that the size of the region be chosen carefully. All coastal regions and all land
regions containing mixed land and water pixels are excluded from this test, since the inherent contrast
between land and water surface radiances would dominate the results. For regions that are too large,
there is increased likelihood of spatial variations in surface parameters. The shape of the test regions
also can be important, since meridianal gradients in surface temperature generally are larger than zonal
gradients. The size of the contrast threshold must be larger than the magnitude of natural variations at
the surface and smaller than that caused by clouds.

4.1.3.3. ISCCP Spatial/Temporal Analysis

In decreasing order of magnitude, temporal variations of IR and VIS radiances are caused by:
(1) formation/dissipation of clouds, or advection of clouds, (2) diurnal heating and cooling (IR) and
changes in solar illumination (VIS), (3) variations of surface parameters at synoptic and seasonal time
scales, and (4) atmospheric conditions. Investigations of temporal variability and regional variations are
reported by Minnis and Harrison (1984a, b), Seze and Desbois (1987), Gutman et al. (1987) and Seze

T B T Bmax< Thresholdcs–
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and Rossow (1991a, b). Diurnal variations of surface temperature on land can be large enough to
prevent a sensitive test. However, this can be partially overcome by modeling the full diurnal cycle
based on the clear measurements in daytime (Minnis and Harrison, 1984a). The IR radiances are cor-
rected to an approximate nadir view by using a radiative transfer model based upon zonal, monthly
mean atmospheric conditions derived from TOVS data.

The following has been adapted from Rossow and Garder (1993); in this implementation, we have
included tests for AVHRR channel 2 and 3 reflectances. The first test in this set examines the tempera-
ture and channels 1 through 3 reflectance values on the present and previous clear days. If

(4.1-2)

(4.1-3)

(4.1-4)

(4.1-5)

then the pixel is labeled as probably clear, where T(i) and T(cs) are the measured (i) and clear sky (cs)
temperatures, respectively, and ρ(i) and ρ(cs) are measured and clear sky reflectance values for each of
the three channels. Obviously, , , , and  must be
larger than the natural surface variability. On the other hand, if these values are set too low, then rela-
tively smooth low-level broken cloudiness will be classified as clear.

Likewise, if

(4.1-6)

(4.1-7)

(4.1-8)

(4.1-9)

then the pixel is labeled as probably cloudy. Pixels which do not satisfy either of the above two tests are
labeled as undecided. The reflectance values defined above are different for different ecosystems.

Events associated with storms may cause large changes in surface temperature. Snow and precipita-
tion and wetting the ground cause large changes in surface reflectances. Therefore, if the previous day
was cloudy and all of the neighboring pixels of the same ecosystem were cloudy, then it is assumed that
a major storm may have occurred and that the above tests are suspect. If some of the neighboring pixels
of the same ecosystem were clear on the previous day, then no major storm event took place. In this
case, the average values of the neighboring clear pixels for the previous day are used in these tests.

A final spatial/temporal test examines characteristic variations of clear conditions of the same eco-
system type over larger spatial scales and at longer periods of time. The short-term (ST) period of time
is approximately 9 days; the long-term (LT) period of time is approximately 25 days. The actual ST and
LT time scales vary according to ecosystem (see Table 4.1-11). The short-term period of time approxi-
mates the natural time scale for significant variability of the local surface temperature and reflectances
and is the repeat cycle for the AVHRR sensor. The long-term period of time is consistent with varia-
tions of more persistent cloud cover and covers three AVHRR cycles. Statistics of the mean (M) and
standard deviation (σ) are computed for both ST and LT over approximately 32 × 32 pixel regions of

T B i( ) T B cs( )– ThresholdT
min< 2.5 K=

ρ1 i( ) ρ1 cs( )– Threshold1
min<

ρ2 i( ) ρ2 cs( )– Threshold2
min<

ρ3 i( ) ρ3 cs( )– Threshold3
min<

ThresholdT
min Threshold1

min Threshold2
min Threshold3

min

T B i( ) T B cs( )– ThresholdT
max> 6 K=

ρ1 i( ) ρ1 cs( )– Threshold1
max>

ρ2 i( ) ρ2 cs( )– ∆Threshold2
max>

ρ3 i( ) ρ3 cs( )– Threshold3
max>
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the same ecosystem. The minimum and maximum values of ST and LT over this region also are found.
If the present-day values are labeled as clear and if these values lie within one standard deviation of the
ST and LT values, then the pixel is labeled as definitely clear. If the present day mean value lies
between M + σ and the maximum value or between M − σ and the minimum value, then the pixel is
labeled as probably clear. A similar test is made if the present day pixel is labeled as cloudy. Otherwise
the pixel is labeled as undecided.

4.1.3.4. CLAVR Reflectance Uniformity Test

The reflectance uniformity test is applied by computing the maximum and minimum values of
AVHRR channel 1 or channel 2 reflectances within a 2 × 2 pixel array. Pixel arrays with channel 1
reflectance differences greater than 9% over land or channel 2 reflectance differences greater than 0.3%
over ocean are labeled as mixed (Davis et al. 1993). The value over ocean is low because a cloud-free
ocean is almost uniformly reflective, while nonuniformity is assumed to be caused by cloudiness.

Note that this test is being refined; first, by requiring that the ecosystem be the same for the pixel
array. Second, the mean and standard deviation of reflectance values for each of the 59 ecosystems (see
section 4.1.4.1.) will be computed for channels 1 through 3 as a function of season. It is expected that
this test can be substantially improved.

4.1.3.5. Cirrus Cloud Tests

a. SERCAA. The brightness temperature difference between channel 4 and channel 5 (TB4 – TB5, or
BTD45) exhibits a persistent cirrus cloud signature based on the fact that cirrus cloud brightness temper-
atures are consistently higher at 10.7 µm than at 11.8 µm. However, in the absence of cloud, water
vapor attenuation can cause a positive BTD45 that could be mistaken for a cloud signature. Thus, the
cloud detection threshold is defined as a function of the channel 4 brightness temperature TB4 (as a sur-
rogate for water vapor loading) and viewing zenith angle θ (to count for atmospheric path length).
Table 4.1-2 contains the threshold values for a range of TB4 and θ developed by Saunders and Kriebel
(1988) is used as the basis in the Cirrus Cloud Test.

The cirrus cloud test is defined as

(4.1-10)

It can apply to both daytime and nighttime.

When the background is classified as snow or ice covered, an additional test is required based on the
assumption that channel 4 brightness temperatures measured from cirrus clouds are lower than the ter-
restrial background temperature. This test is defined as:

(4.1-11)

Table 4.1-2. Thresholds for SERCAA Cirrus Cloud Test

Threshold for sec(θ) of—

TB4 1.00 1.25 1.50 1.75 2.00

260 0.55 0.60 0.65 0.90 1.10
270 0.58 0.63 0.81 1.03 1.13
280 1.30 1.61 1.88 2.14 2.30
290 3.06 3.72 3.95 4.27 4.73
300 5.77 6.92 7.00 7.42 8.43
310 9.41 10.74 11.03 11.60 13.39

T B4 T B5– Threshold T B4 θ,( )>

T cs T B4– Thresholdci>
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where Tcs is the clear sky brightness temperature, and Thresholdci = 5.0 K, is the cirrus cloud snow/ice
filter threshold.

b. CLAVR. The CLAVR brightness temperature difference between channels 4 and 5 (BTD45)
(Stowe et al. 1993; Inoue 1987, 1989) is particularly effective in detecting cirrus clouds. Stowe et al.
suggest the following thresholds for oceans and land:

(4.1-12)

(4.1-13)

where the coefficients ai are given in Table 4.1-3. If the value for Threshold45 is greater than the thresh-
old determined from equations (4.1-12) or (4.1-13), the pixel is labelled as being cloudy. If TB4 is less
than 260 K over a water surface, the threshold is set to zero.

4.1.3.6. Cold Cloud Test

The Cold Cloud Test uses a single IR channel to discriminate the thermal signature of midlevel
clouds from the terrestrial background. A cloud decision is made by comparing the channel 4 brightness
temperature TB4, with the clear scene brightness temperature Tcs. When TB4 is lower than Tcs by a
amount greater than a preset threshold, the pixel is classified as cloudy. The test is defined as:

(4.1-14)

where Thresholdcold is the surface-dependent threshold shown in the following table:

Table 4.1-3. Coefficients Used to Determine Thresholds
for CLAVR Cirrus Test

Coefficient Ocean Land

a0 9.27066 × 104 −1.34436 × 104

a1 −1.79203 × 103 194.945

a2 13.8305 −1.05635

a3 −0.0532679 2.53361 × 10−3

a4 1.02374 × 10−4 −2.26786 × 10−6

a5 −7.85333 × 10−8 0

Table 4.1-4. Thresholds for Cold Cloud Test

Surface background Threshold (K)

Water 9.0
Land 10.0
Coast 20.0
Desert 10.0
Snow 15.0

Threshold45 oceans( ) aiT B4
i

i 0=

5

∑=

Threshold45 land( ) aiT B4
i

i 0=

4

∑=

T cs T B4– Thresholdcold>
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4.1.3.7. Daytime Low Cloud and Fog Test

The Low Cloud and Fog Test is based on the different radiative characteristics of liquid water
clouds at AVHRR channel 3 (3.7 µm) and channel 4 (10.8 µm) wavelengths. During daytime, the radi-
ance from channel 3 is a combination of both emitted and reflected energy, while channel 4 is only
emitted energy. The test assumes that a liquid water cloud will reflect enough solar energy at 3.7 µm to
make the channel 3 brightness temperature, TB3, significantly higher that TB4. The test is defined as the
difference between the 3.7- and 10.8-µm brightness temperatures (BTD34):

(4.1-15)

where Thresholdlcf is a surface-dependent cloud detection threshold given in Table 4.1-5.

The test is extremely sensitive to desert surface and Sun glint, since they increase the 3.7-µm radi-
ance relative to the 10.8-µm radiance. Potential sun glint areas are identified prior to testing for cloud
contamination and a larger threshold is applied at sun glint regions.

4.1.3.8. Daytime Precipitating Cloud Test

The Precipitating Cloud Test exploits the reflective nature of thick ice clouds at 3.7 µm. Optically
thick ice clouds, such as towering cumulonimbus, reflect more strongly than optically thin cirrus. There-
fore, the brightness temperature from channel 3, TB3, is much higher than the true physical temperature
of clouds, represented by TB4. The test is defined as

(4.1-16)

where Thresholdprecip(1) = 20.0 K is a cloud detection threshold.

Two additional checks should also be performed to discriminate cumulonimbus clouds from low
liquid water clouds and optical thin ice clouds, such as cirrostratus.

(4.1-17)

(4.1-18)

where Tclear sky is the clear sky brightness temperature, ρ2 is reflectance of channel 2, and
Thresholdprecip(2) and Thresholdprecip(3) are precipitating cloud detection thresholds. Thresholdprecip(2)
= 30.0 K and Thresholdprecip(3) = 0.45.

The Tclear sky − TB4 test eliminates any low clouds that pass the TB3 − TB4 test by ensuring that the
true physical cloud top temperature is significantly lower than the clear scene brightness temperature.
The ρ2 test eliminates ice clouds that are not optically thick, and hence not as bright as precipitating
clouds.

Table 4.1-5. Thresholds for Daytime Low Cloud and Fog Test

Surface background Threshold (K)

Nondesert 12.0
Desert 20.0
Sun glint regions 54.0

T B3 T B4– Thresholdlcf>

T B3 T B4– Thresholdprecip(1)>

T clear sky T B4– Thresholdprecip(2)>

ρ2 Thresholdprecip(3)>
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4.1.3.9. Daytime Thin Cirrus Cloud Test

The Daytime SERCAAThin Cirrus Cloud Test utilizes the results from the solar independent Cirrus
Cloud Test and the reflectance of channel 1 and channel 2. Recall the Cirrus Cloud Test requires the fol-
lowing conditions to be met:

(4.1-19)

where Threshold (TB4, θ) is the cloud detection threshold obtained through interpolation from
Table 4.1-2.

If the background is classified as snow or ice covered, an additional test is required:

(4.1-20)

where Tclear sky is the clear sky brightness temperature, and Thresholdci = 5.0 K is the cirrus cloud
snow/ice filter threshold.

In addition to the tests listed above, the Daytime Thin Cirrus Cloud Test uses reflectance of chan-
nel 1 (ρ1) and channel 2 (ρ2) to discriminate thin cirrus. The criterion used is dependent on the back-
ground surface type:

(4.1-21)

(4.1-22)

where Thresholddci_w and Thresholddci_l are the cloud detection threshold values over water and land,
respectively, Thresholddci_w = 0.2 and Thresholddci_w = 0.2.

4.1.3.10. Visible Reflectance Ratio Test

The Visible Reflectance Ratio Test is based on the fact that for clouds, the spectral signature in
channel 1 and channel 2 are very close to each other so that the ratio ρ2/ρ1 is approximately equal to 1.
For clear land surfaces, the radio is greater than 1.0 and for water surfaces, the ratio is less than 1.0.
Thus, the cloud test is applies by testing the ρ2/ρ1 ratio against upper and lower limit cloud thresholds.

The test is only used in the absence of sun glint, desert, snow/ice background, and coast regions, all
of which can produce a false cloud signal.

High humidity causes increased concentrations of aerosols and haze, resulting in a preferential
increase in atmospheric scattering at visible wavelengths relative to the near-IR, which results in a
higher measured channel 1 reflectance to channel 2 for cloud-free areas and produces a false cloud sig-
nature. To account for this, the value for upper and lower thresholds are lowered to account for lower
clear scene channel ratio values. Regions of potentially high humidity are identified by testing the mag-
nitude of the clear sky brightness temperature against a threshold:

(4.1-23)

where Thresholdratio_humid = 295 K is the high humidity threshold. In regions where this test evaluates
as true, the Visible Brightness Ratio Test is defined as

(4.1-24)

where Thresholdratio_lo_wet and Thresholdratio_up_wet are the lower and upper limit ratio thresholds for
high humidity. In regions where the humidity test evaluates as false, the Visible Brightness Ratio Test
uses a different set of thresholds:

T B4 T B5– Threshold T B4 θ,( )>

T clear sky T B4– Thresholdci>

ρ2 Thresholddci_w< Over water( )

ρ1 Thresholddci_l< Over land( )

T clear sky Thresholdratio_humid>

Thresholdratio_lo_wet ρ2 ρ1⁄ Thresholdratio_up_wet< <
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(4.1-25)

where Thresholdratio_lo_dry and Thresholdratio_up_dry are the lower and upper limit ratio thresholds for
lower humidity given in Table 4.1-6.

4.1.3.11. Reflectance Threshold Test

The test described here is used in CLAVR, SERCAA, and ISCCP, and uses a visible wavelength
channel threshold to discriminate high cloud reflectance from a low background reflectance. This test
works well in discriminating most cloud types with the exception of thin cirrus. The clear sky back-
ground reflectance (ρcs) is calculated from clear sky albedo (αcs) and the bidirectional reflectance func-
tion (BDRF). The clear-sky albedo is obtained by spatial and temporal interpolation from ISCCP’s
3-hour 2.5° map. The BDRF’s for ocean and land were developed from GOES East and GOES West
data (Minnis and Harrison 1984a, b, c); BDRF’s for other surface types are taken from the ERBE broad-
band bidirectional models until other models can be developed and tested.

The clear sky reflectance is shown as follows:

(4.1-26)

where θo, θ, and φ are solar zenith, viewing zenith, and relative azimuth angles, and M is scene type.

A pixel is classified as cloudy if the satellite measured reflectance exceeds the expected clear-scene
background value by an amount greater than a threshold. The test is only applied for the pixels with
θo < 70° and not applied for regions containing sun glint, desert, or snow/ice background. Separate
thresholds and different channels are used for land and water backgrounds. Over land, channel 1 reflec-
tance is used, while over water channel 2 data is used. The test is defined as

(4.1-27)

(4.1-28)

where Thresholdland = 0.25 and Thresholdwater = 0.16 are cloud detection thresholds over land and
water background, respectively.

4.1.3.12. Channel 3 Reflectance Test

Likewise channel 3 reflectance values > 6% are considered to be cloudy. However, “cloudy” pixels
with channel 3 reflectance values < 3% are considered to be snow/ice (Davis et al. 1993). Note that the
channel 3 reflectance tests are not applied over deserts. This is because bright desert regions with highly
variable emissivities tend to be misclassified as cloudy with this test. Thermal contrast needs to be
examined in conjunction with channel 3 reflectivity. As we gain experience with these approaches, the
actual thresholds will be adjusted to ecosystem type.

Table 4.1-6. Thresholds Based on Humidity
for Visible Reflectance Ratio Test

Thresholdratio_lo_wet 0.7

Thresholdratio_up_wet 1.0

Thresholdratio_lo_dry 0.75

Thresholdratio_up_dry 1.1

Thresholdratio_lo_dry ρ2 ρ1⁄ Thresholdratio_up_dry< <

ρcs αcs BDRF θo θ φ M, , ,( )⁄=

ρ1 ρcs– Thresholdland> Over land( )

ρ2 Thresholdwater> Over water( )
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4.1.3.13. Nighttime Low Stratus Test

Both SERCAA and CLAVR describe low stratus tests (LST) based upon the brightness temperature
differences between the 3.7- and 11-µm channels. The test assumes that for water droplet clouds, the
emissivity at 3.7 µm (channel 3) is general lower than at 10.8 µm (channel 4). For the CLAVR test, the
threshold for the LST test (ThresholdLST) is described as:

(4.1-29)

where A = −9.37528, B = 0.0341962, and C = 1.0 (oceans) and C = 3.0 (land). The constant C increases
for land from the ocean value and depends on surface type. This test is applicable for the temperature
range 264 K to clear-sky TB4. If the threshold is exceeded, then low stratus is said to exist. The specific
values of the coefficients may vary in the CERES implementation, depending on the results of testing
with global GAC data.

 The SERCAA test assumes that clouds are detected if TB4 is greater than TB3 by an amount greater
than a cloud detection threshold:

(4.1-30)

where ThresholdLST is a surface-dependent cloud detection threshold:

The final determination of thresholds to use for the CERES algorithm will be determined through global
analysis of AVHRR data.

4.1.4.14. Nighttime Thin Cirrus Test

Both the SERCAA and CLAVR methods use a similar test based upon the difference in brightness
temperatures between the 3.7- and 12-micron channels (TB3 − TB5, or BTD35). The test is based on the
idea that cirrus cloud transmissivity at 3.7 µm (channel 3) is generally greater than at 12 µm (channel 5),
causing some radiation from warmer backgrounds to be included in the channel 3 measurement. If the
difference exceeds a given threshold, then cirrus is said to exist in the pixel.

The CLAVR Cirrus Test (CIRT) is applied at night over both land and ocean. The threshold is
determined by the brightness temperature of channel 4 (11 micron). This threshold was defined by using
a simulation database to plot cloud-free CIRT values against the associated channel 4 temperatures. The
relatively high optical transmittance of most cirrus clouds, along with the spectrally different Planck
blackbody radiance dependence on temperature, can identify cirrus clouds. The CIRT threshold is given
by

(4.1-31)

When TB4 < 273 K, this threshold is set to zero; when TB4 > 292 K, it is set to 0.033. If the threshold is
exceeded, then thin cirrus is said to exist in the pixel.

The SERCAA Nighttime Thin Cirrus Cloud Test is defined as:

(4.1-32)

where Thresholdtci = 4.0 K is the nighttime thin cirrus cloud detection threshold.

Empirical study has found that in regions of high humidity, the water vapor can attenuate the chan-
nel 5 signal by several degrees K. As a result, clear background surfaces will appear significantly cooler
in channel 5, and if the clear sky brightness temperature does not take the humidity into account, the

ThresholdLST exp A BT B4+{ } C–=

T B4 T B3– ThresholdLST>

ThresholdLST 1.0 K= Over nondesert( )

ThresholdLST 2.0 K= Over desert( )

ThresholdCIRT 0.485– 1.775×10
3
T B4+=

T B3 T B5– Thresholdtci>
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result could be a false detection of cloud. The high humidity regions are identified if the clear sky
brightness temperature is greater than a defined threshold:

(4.1-33)

where Thresholdtci_humid = 290 K is the high humidity threshold. If the humidity test is true, then
AVHRR channel 4, which is less sensitive to water vapor attenuation, is used instead of channel 5 in the
test:

(4.1-34)

where Thresholdtci is the same threshold used with channel 5.

4.1.4. Artificial Intelligence Cloud Classification Techniques

There are regions in which simple cloud mask algorithms have been shown to perform inade-
quately, such as in polar, rugged terrain, and coastal regions. For these areas, or when the cloud masks
indicate no clear decision on whether cloud is present, artificial intelligence (AI) classification
approaches will be applied. The AI classification approaches use a number of textural and spectral fea-
tures, or measures, that are derived from the satellite data. The following discussion outlines the meth-
ods that will be employed in the Release 1 algorithm. We should note that if the reader wishes to skip
this discussion, section 4.1.5. begins the actual description of the cloud mask implementation.

4.1.4.1. Texture Features

Texture is often interpreted in the literature as a set of statistical measures of the spatial distribution
of gray levels in an image. Here it is assumed that textural information is contained in the average spa-
tial relationships that gray levels have with one another (Haralick et al. 1973). The gray level difference-
vector (GLDV) approach is based on the absolute differences between pairs of gray levels I and J found
at a distance d apart at angle φ with a fixed direction. The GLDV difference-vector probability density
function P(m)d,φ is defined for m = I − J, where I and J are the corresponding gray levels having a value
between 0 and 255. The gray level range may vary, but we will use 28 gray levels in our analysis. The
density function P(m)d,φ (henceforth P(m), where the dependence of P(m) on d and φ is implicitly
assumed) is obtained by normalizing the GLDV difference vector by the total number of difference
pairs. Once P(m) has been formed, textural measures are computed for each of the five AVHRR spectral
channels assuming a pixel separation distance of d = 1 and at an angle φ = 0° and 90°. The following
textural features are computed for use in the classification system, and are calculated individually for
each N × N pixel subarray.

Mean:

(4.1-35)

Standard deviation:

(4.1-36)

Contrast is a natural measure of the degree of spread in the gray levels. A small contrast value indi-
cates high concentration of occurrences on the main diagonal and represents a coarse texture. Larger
values of contrast indicate that the occurrences are spread out about the main diagonal and represent a
finer structure:

T cs Thresholdtci_humid>

T B3 T B4– Thresholdtci>

u mP m( )
m
∑=

σ m u–( )2
P m( )

m
∑

1 2⁄
=
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(4.1-37)

Angular second moment is a measure of homogeneity in the subscene. The measure is smallest
when the gray levels are equally probable, and large values indicate that there are dominant gray levels
present.

(4.1-38)

Entropy is a measure of disorder in the scene, and is largest for equally distributed gray levels and
smallest when they are unequally distributed.

(4.1-39)

Local homogeneity is a measure of local similarity and has a larger value for coarse textures than for
finer textures.

(4.1-40)

Cluster shade is a measure of the degree to which the outliers in the histogram favor one side or
another of the mean.

(4.1-41)

Cluster prominence measures the effect of the outliers on the peak of the distribution.

(4.1-42)

These features are described by Chen et al. (1989) in greater detail. Plots of representative cloud
texture measures as a function of pixel separation distance and angle are shown in Welch et al. (1989)
and for a variety of ice and snow backgrounds in Welch et al. (1990).

4.1.4.2. Spectral Features

The spectral features are formed from the gray level representation of the bidirectional reflectances
for AVHRR channels 1 and 2 and from the gray level representation of brightness temperatures for the
NIR and IR channels. The reflectances are calculated using the solar zenith angle θo at each pixel and
then scaled to gray levels 0–255, representing 0%–100%, respectively. Gray level representation means
that the range of possible values is scaled between 0–255. The daytime 3.7-µm measured radiance con-
tains contributions from both solar reflection and thermal emission. For classification purposes only, the
AVHRR 3.7-µm radiometric data (channel 3) are converted to bidirectional reflectance through a
relationship commonly used for optically thick clouds (e.g., Allen et al. 1990; Ebert 1987; Key and
Barry 1989):

(4.1-43)

CON m
2
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m
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where I3 and F3 are the radiance and incoming solar flux for channel 3, respectively. The 3.7-µm ther-
mal emission is estimated by using the 10.8-µm brightness temperature (TB4) to calculate the Planck
emission at the central wavelength of channel 3, B3(TB4). The reflectance calculated in this fashion is
used as a spectral feature because it has been shown to be effective in distinguishing between water and
ice clouds (Allen et al. 1990). Note that this is a rough approximation to the true channel 3 reflectance
and does not account for differences in emissivity between channels 3 and 4 or for nonblack clouds.

Additional spectral features are formed from combinations of the five AVHRR channels. Spectral
features are formed from the gray-level representation of reflectances, brightness temperatures, or com-
binations of quantities, such as brightness temperature differences between two channels. The spectral
features are calculated for a single channel quantity X (where a quantity is either a reflectance or a
brightness temperature), for two different quantities X and Y, or for three quantities X, Y, and Z, as
follows.

1. Mean X: This spectral feature is the mean gray level value of either reflectance or brightness tem-
perature calculated from the array.

2. Band Difference [X − Y]: This spectral feature is the difference of the gray-level means of two
channels.

3. Band Ratio [X/Y]: This feature is formed from taking the ratio of mean gray-level values between
two channels.

4. Overlay [X, Y, Z]: This spectral feature forms a packed integer from the mean gray-level value of
three quantities X, Y, and Z. It is similar in nature to the idea of using 24-bit color graphics to form
false-color imagery. With the proper channel combination, warm reflective stratus clouds would
have different values than cold, thin, less-reflective cirrus. The overlay of X, Y, and Z is calculated
from OVERLAY = Z * 216 + Y * 28 + X. This particular feature is useful in separating the clear-
sky land, low-level cloud, mid-level cloud, and high-level cloud classes.

5. Low X: This feature is the percentage of pixels in the array that have a reflectance less than 10%. It
is calculated only for AVHRR channels 1, 2, or 3, and is not calculated from gray-scale values. For
channel 3, the reflectance is determined by Equation 4.1-43.

6. High X: This feature is essentially the complement of LOW X. It is the percentage of pixels where
the reflectance is greater than 10% (again, only for AVHRR channels 1–3). For channel 3, the
reflectance is determined by Equation 4.1-43.

7. Spatial coherence: For a given array, means and standard deviations are calculated for all local
(2 × 2 or 4 × 4) pixel groups within the 32 × 32 array. The spatial coherence feature is the mean of
those local pixel groups that have a standard deviation less than 2.5.

This list of spectral features demonstrates a sampling of the nature of features currently in use and
will be added to in future work.

4.1.4.3. Subregion (N × N array) Labeling

A critical aspect of the algorithm development is subarray labeling. To train and test classifiers, a
large number of labeled samples for each class are required. A sample is defined here as an N × N array
of AVHRR data. Accurate labeling is the key to accurate classification. Therefore, it is important to pro-
vide the analyst with as much information as possible. The actual labeling process involves more than
choosing samples directly from a screen image. For each scene, the analyst uses a variety of ancillary
data sets to aid in gaining more information on the scene. For instance, for sample labeling over North
America, we also study NMC analyses or rawinsonde temperature and humidity profiles and National
Weather Service 6-hourly surface synoptic observations to gain a better understanding of the overall
scene.

Figure 4.1-1 shows an example of the Satellite Image Visualization System (SIVIS) which displays
three-band color overlays. A series of pull-down menus are available to the analyst which allow a wide
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range of channel displays and image processing functions. By default all bands are histogram equalized
for contrast enhancement. However, any combination of band differences and band ratios can be
designed and displayed on command. Additional display features such as principal components, decor-
relation stretch, canonical transformations, and edge finding are being implemented.

4.1.4.4. Automated Classification Methods

4.1.4.4.1. Overview. The tests described in section 4.1.3. are to one degree or another based upon
thresholds. The NOAA CLAVR algorithm is a decision tree based upon thresholds. The NASA ISCCP
algorithm combines uncertainties from multiple tests in a similar fashion.

Texture is a powerful tool for defining the context of a region. Textures were not invoked in the pre-
vious analysis because they about double the cpu requirements of the algorithm. However, they are
applied to regions which are uncertain. It is probably desirable to apply textures from the outset for dif-
ficult regions such as coastlines, deserts, snow covered regions, and areas of variable topography. A tex-
ture-flag is set to inform the algorithm manager that texture is to be used.

The textures, along with the results from the previous tests, are then passed to an artificial intelli-
gence classifier. It is a common misconception that AI techniques are operationally more cpu intensive.
While AI techniques often do take longer to train, they are no more cpu intensive than are traditional
approaches such as Maximum Likelihood. Indeed, many of these AI classifiers are more cpu efficient in
the operational mode.

Thresholds are never global. There are always exceptions. For example, the ρ2/ρ1 ratio test
(section 4.1.3.10.) identifies cloud for values in the range 0.9 < ρ2/ρ1 < 1.1. However, new analyses
(McClain 1993) suggest that the lower value may need to be lowered to about 0.8, at least for some
cases. The same is true for the other tests. Indeed, it seems unrealistic to label a pixel with ρ2/ρ1 = 1.1 as
cloudy, and a neighboring pixel with the ratio of 1.11 as noncloudy. Rather, as one approaches the
threshold limits, the certainty of the labeling becomes more and more uncertain, or “fuzzy.” In situa-
tions where the threshold results are uncertain, we will use test the use of either a neural network or
fuzzy logic based classification system. In a nutshell, fuzzy logic may be thought of as following the
entire decision tree, keeping a running total of the uncertainty accumulated along each path. Instead of
hard-and-fast thresholds, fuzzy membership functions are used. Then, at the termination of the decision
tree, a “defuzzication” function is applied to the results. Uncertainty estimates of clear and cloudy at
each pixel are the outcome.

4.1.4.4.2. Don’t care neural network classifier. A perceptron network consists of an input layer, an
output layer, and weights which define linear separating surfaces. Each pattern class Ci is separated by
hyperplanes from all other surfaces. It has long been known that this network has very limited capabili-
ties. Consider three tangent circles, each of which represents a class in 2-space. Neither traditional clas-
sifiers nor the perceptron network can find separating surfaces to correctly classify the points in the
circles. However, the problem can be solved by a three-layer network or by training the network to find
pairwise linear separating surfaces. Training a network to produce pairwise linear separating surfaces
requires that for any class Cm, the linear function corresponding to the separating hyperplane Ci/Cj will
have the value 1 if m = i, a value of 0 if m = j, and a “don't care” x output otherwise.

For a two-layer network, the surfaces separating the various classes are linear. Similarly, in a multi-
layer network, nonlinear surfaces separate the classes. Again, pairwise separating surfaces can be con-
structed using “don’t care” outputs. In the perceptron case, the addition of “don't care” outputs broadens
the repertoire of problems the network can solve. For multilayer networks, a different benefit results.
The hidden layer allows the decision surfaces to be formed into arbitrarily complex shapes. The surfaces
initially are “simple,” and additional training (i.e., iterations) introduces the more complex elements
into the separating surface. The network can be trained to find the simpler pairwise separator surfaces
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and then construct a more complicated separating surface from pieces of these simpler curves. As a
result, fewer iterations are required to train the network. Our studies show that this approach can sim-
plify the training significantly and reduce the training time by two orders of magnitude.

The steps in the algorithm can be summarized as

Step 1: Determine the number of output nodes needed to represent the pattern classes.

Since the network will produce pairwise separating surfaces, the number of output nodes required
for this technique is:

(4.1-44)

where N is the number of classes. In contrast, traditional approaches only require N output nodes.

Step 2: Build the class representations.

Consider the desired node outputs for a class to be a bit string, where each position in the bit string
serves as a discriminator between two classes. For each pair of classes, select a bit not previously cho-
sen to be the discriminator and set that bit in one string to 0; set that same bit to 1 in the second string.
After all pairs have been processed, fill the remaining positions with “don’t care” symbols. This simple
process can be easily automated and introduces only a small overhead penalty to the training algorithm.

For example, a 4-class problem requires six output nodes. Using the above algorithm, one possible
assignment of output values to classes can be found in the following table.

Note that bit 1 discriminates between class 1 and 2, bit 2 discriminates between class 1 and 3, and so
on. The symbol “x” denotes a don’t care value.

Step 3: Train the network.

During training, error is measured at the output nodes and used to adjust the network weights using
back-propagation. In our experiments, the error measure

(4.1-45)

was used. However, unlike the standard back-propagation algorithm, the above error is not calculated at
the nodes which have a don't care designation. The set of weights that will be adjusted during a particu-
lar training episode is, therefore, a function of the input pattern. Note, however, that all input to hidden
weights are updated.

Step 4: Classify the pattern.

To classify the pattern, simply compare the outputs to the bit strings for each class. Note that an out-
put pattern can match at most one class since there is a discrimination bit for each pair of classes. How-
ever, it is possible that an output pattern will not match any class. As with standard back-propagation,

Table 4.1-7. Possible Assignment of Output Values

Bit number—

Class 1 2 3 4 5 6

1 1 1 1 x x x
2 0 x x 1 1 x
3 x 0 x 0 x 1
4 x x 0 x 0 0

N
2 

  N N 1–( )
2

-----------------------=

Network Error– Actualk Desiredk–( )2

k
∑=
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the option exists to force a match by selecting the class to which the output pattern is in closest
agreement.

4.1.4.4.3. Cloud mask using a fuzzy logic classifier. The “fuzzy logic” classifier methodology is
described in Tovinkere et al. (1993). The classifier uses the concept of class membership to determine
what classes are present within a given data array. For the cloud mask process, the initial set of classes
will be cloud, land, snow, and water. Since the Tovinkere et al. (1993) study addresses only cloud clas-
sification in the Arctic, modifications to the methodology will be necessary for use in a global algo-
rithm. This approach is moving from the conceptual stage to a test stage at the current time.

Class mixtures are often classified as a single class, thereby leading to poor information extraction.
This is due to uncertainty in the membership concept of the classical set theory. This representation
scheme has difficulty in dealing with elements that partially belong to two or more sets. In order to
improve the information representation, the concept of fuzzy set theory has been used. Fuzzy logic is
concerned with formal principles of approximate reasoning; i.e., it aims at modeling imprecise modes of
reasoning to make decisions in an environment of uncertainty.

The greater expressive power of fuzzy logic derives from the fact that it contains, as special cases,
not only the classical two-value and multivalued logical systems but also probability theory and proba-
bilistic logic. The main features of fuzzy logic that differentiate it from traditional logical systems are
the following:

1. In two-valued logical systems, a proposition p is either true or false. In multivalued logical sys-
tems, a proposition may be true or false or have an intermediate truth value.

2. The predicates in two-valued logic are constrained to be crisp in infinite truth value set T. In fuzzy
logic, truth values are allowed to range over the fuzzy subsets of T. Predicates may be either crisp
(e.g., “mortal,” “even”) or fuzzy (e.g., “tired,” “tall,” “cold”).

3. Two-valued as well as multivalued logics allow only two quantifiers: “all” and “none.” By contrast,
fuzzy logic allows the use of fuzzy quantifiers exemplified by “most,” “many,” “several,” and so
on. Such quantifiers may be interpreted as fuzzy numbers that provide an imprecise characteriza-
tion of the cardinality of one or more fuzzy or nonfuzzy sets. In this way, a fuzzy quantifier may be
viewed as a second-order fuzzy predicate. On the basis of this view, fuzzy quantifiers may be used
to represent the meaning of propositions containing fuzzy probabilities and thereby make it possi-
ble to manipulate probabilities within fuzzy logic.

4.1.4.4.4. The fuzzy expert system (ES). A fuzzy ES includes two other elements, in addition to the
components of a conventional system, “fuzzifiers” which convert inputs into their fuzzy representa-
tions, and “defuzzifiers” which convert the output of the inference process into a single numerical value
within the range of values of the output variable. The numerical output is used to adjust the state of the
system being controlled.

A fuzzy control variable may have several states, each state being represented by a membership
function. Suppose we are able to classify cloud from clear land and open water by just using the reflec-
tances computed from channel one (CH1) and temperature from channel four (CH4). Figure 4.1-2
shows the different states for these two measures. CH1 is defined by the five albedo states: very low,
low, medium, high, and very high. CH4 is defined by the three temperature states: cold, normal, and
warm. The albedo measured in CH1 generally is higher for clouds than for land and water. CH4 gener-
ally is warm for land and cold for clouds. The above reasoning might lead to the following set of fuzzy
rules:

Rule 1: IF CH1 is very low and CH4 is normal THEN class is water
Rule 2: IF CH1 is low and CH4 is warm THEN class is land
Rule 3: IF CH1 is medium and CH4 is cold THEN class is cloud
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The CH1 reflectance and CH4 temperature values are rescaled to an integer ranging from 0 to 255.
As shown in Figure 4.1-2, for a given image sample, the input value for CH1 is 0.17 and 0.4 for CH4;
the fuzzifier then computes the degree of membership (DM) for one or more of these fuzzy states. In
this case, the states “very low” and “low” of CH1 have membership values of 0.25 and 0.5, respectively.
The other states for CH1 are zero. Similarly, the only state of CH4 with a value different from zero is
“normal,” with a value of 0.60. The confidence level (CL) for each rule is computed by combining the
DM’s associated with each condition using the following certainty theory formula (Luger and
Stubblefield 1989):

(4.1-46)

where C1 and C2 are the conditions of the rule. The CL for rules 1, 2 and 3 are

Rule 1: min(0.25, 0.60) = 0.25
Rule 2: min(0.5, 0.0) = 0.0
Rule 3: min(0.0, 0.0) = 0.0

Figure 4.1-2.  Schematic showing the concept of class membership in the fuzzy logic classification approach as discussed in
section 4.1.4.4.3.

very
 low low       medium         high          very high

cold                      normal                       warm
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Since rule 1 has the higher confidence level, the class selected is “water,” which corresponds to the
action of rule 1.

The classification process is performed with the aid of a general fuzzy expert system (GFES). GFES
can handle different membership functions for describing the different states of the control variables.
These functions are triangular; trapezoidal; one-, two-, and three-dimensional normal distributions; PI
function; S function; and elliptical cones. The height for all these functions is equal to 1, since any
membership function can have any real value between 0 and 1. The multivariate normal distribution is
an extension of the one-dimensional normal distribution.

Usually, triangular, trapezoidal, PI, and S functions (Giarratano and Riley 1990) are used for the
definition of fuzzy ES’s. Since our classifier uses control variables which are often assumed to belong to
normal distributions, we have extended the usual set of function types to accommodate the definition of
fuzzy states with one- and multi-dimensional normal distributions. Our experiments show that by
increasing the number of dimensions, the classifier is able to separate better the different classes.

Three input files are required to run GFES: a control variable file, a rule file, and a facts file. The
control variable file requires the following information for each control variable: the name of the vari-
able (e.g., temperature), the type of membership function used to approximate the mean and standard
deviation of the feature vector, the number of states, the state names (e.g., hot, cold), and the values that
define each state’s membership function. The output consists of the class or classes present in the region
or pixel with an associated value representing the percentage of the class within the region or pixel.

4.1.5. Cloud Mask Algorithm Description

4.1.5.1. Ancillary Data Set Requirements

A number of preprocessing steps will be made to the AVHRR GAC data before the cloud masking
algorithm is applied. An example of navigated GAC data is shown in Figure 4.1-3. These preprocessing
steps are described below:

1. The NAVY 10-min database is a 1080 × 2160 array covering 180° in latitude from North to South
Pole and 360° in longitude (Fig. 4.1-4). This database provides surface elevation (Fig. 4.1-4), the
percentage (an integer between 0 and 100) of water in the 10-min box, and character type as shown
in Table 4.1-8 and Figure 4.1-5. Note that multiple characteristics are defined in this system; an
example is code 14 = flat lake country or atoll.

Table 4.1-8. Navy Character Map that Provides a
General Surface Classification

Code Feature

0 Salt or lake bed
1 Flat or relatively flat
2 Desert (or for high latitudes, glaciers,

or permanent ice)
3 Marsh
4 Lake country or atoll
5 Major valleys or river beds
6 Isolated mountains, ridge, or peak
7 Low mountains
8 Mountainous
9 Extremely rugged mountains

62 Ocean
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2. The EPA Global Ecosystem (WE1.4D) Database also is a 1080 × 2160 byte array which contains
59 different ecosystems classes (Fig. 4.1-6).

3. The US NAVY/NOAA Sea Ice Product provides weekly reports of fractional ice coverage at spa-
tial resolution of about 18 km.

4. The NOAA Snow Data Product provides weekly report of snow cover at a spatial resolution of
150–200 km; snow is reported if the grid cell is more than 50% covered.

5. The NMC 3-hour surface analyses of temperature and wind speed.

Ancillary data will be subset into scenes of about 1000 lines each consisting of 409 pixels (the full
swath of AVHRR GAC data). First each pixel in the scene will be tagged as being land or water, and if
land, a land/water percentage. Second, each land pixel will be designated as relatively flat, valley,

Figure 4.1-3.  A navigated AVHRR GAC (~4 km resolution) image from 88°W to 104°W longitude and 2°N to 20°N latitude.
Overlaid upon the satellite radiometric data are the coastline boundaries.
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isolated mountainous region, low mountains or hills, generally mountainous, or extremely rugged
mountains. From the NOAA Snow Data Product each pixel will be designated as probably/probably not
snow covered. Each land pixel will be classified as to its ecosystem, along with a more general ecosys-
tem classification of urban, forest, woodland, grassland, shrubland, tundra, arid vegetation and highland
vegetation. Ocean regions will be classified as water, coastline (including islands), possibility of iso-
lated icebergs, marginal ice zone, and nearly solid sea ice (leads may be present).

4.1.5.2. Cloud Mask for Daylight Oceanic Areas

The procedures outlined here will be applied between 60°N and 60°S for oceanic regions and sea-
sonally for large lakes (for which ice is very unlikely). Solar zenith angles are constrained to be less
than 85°. The nighttime algorithm is used for sun glint areas.

4.1.5.2.1. SERCAA Sun glint test. The Sun glint test is applied over water surfaces. Reflectance over
open water is strongly influenced by illumination and viewing geometry. Sun glint is also a function of
surface wind. To determine whether sun glint is present, we will implement a series of tests that are used
operationally by SERCAA. Two sets of tests are run. The first set of three tests determine if the back-
ground surface type and solar/satellite geometry will support sun glint. The three tests are

1. Surface type must be water
2. |θo − θ| < Thresholdzenith
3. Azimuthal angle must fall within a certain range

If pixels passed the first set of tests, a second set of spectral tests is applied:

4. The reflectance must be high in the visible channels
5. The 3.7-µm brightness temperature must be high (near saturation)
6. The IR brightness temperature must be relatively high (not indicative of cold clouds)

Pixels that pass the sun glint test but have little illumination due to high solar zenith angle (θo > 85°)
will be passed to the nighttime ocean algorithm.

4.1.5.2.2. Cloud mask tests. The hierarchical approach we will use in the Version 1 code has six
stages:

1. Filter pixels that have sun glint
2. Filter pixels that have high solar zenith angle
3. Spatial coherence (to identify clear and cloudy pixels in a 256-km by 256-km region)
4. Apply masking tests to individual pixels in the following order:

- Imager pixel IR channel threshold test
- Imager pixel NIR-IR brightness temperature difference threshold tests
- Imager pixel visible channel reflectance threshold tests
- Imager pixel visible channel ratio test

5. Apply masking tests to pixel arrays, or tiles, in the following order
- Spatial contrast
- Spatial/temporal uniformity
- Artificial intelligence classification
- IR clear-sky composite consistency test
- VIS clear-sky composite consistency test

6. Determine final result of mask tests for each pixel

4.1.5.3. Cloud Mask for Daylight Land Areas

This portion of the algorithm is applied to land areas at latitudes from 60°N to 60°S, including
islands. The hierarchy of cloud mask algorithm application is as follows.
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1. Check ecosystem (vegetation) map and land/water percentages data bases. Determine land/water
percentage and vegetation for every pixel.

2a. Compute sun glint angles for every pixel. Within the sun glint region the percent water database
is examined (at 10-min resolution). If water is present, then a flag is set indicating possible sun
glint. Eliminate use of visible channels for sun glint pixels and apply nighttime algorithm to those
pixels.

2b. Over land pixels that are vegetated, compute scattering angle. If the scattering angle is close to
0°, there may be enhancements in the visible channel reflectances (hot spots). The scattering
angle is computed from

3. Check surface elevation, clear-sky radiance/temperature data base, and snow-cover data base.
4. If the pixel or subregion is snow-covered, rugged terrain, coastline, or other special cases, pass

imager data to automated classification algorithms.
5. Apply spatial coherence to large-scale 256-km by 256-km regions.
6. Apply masking tests to individual pixels in the following order

- Imager pixel IR channel threshold tests
- Imager pixel NIR-IR brightness temperature difference threshold tests
- Imager pixel visible channel reflectance threshold tests.

7. Apply masking tests to pixel arrays, or tiles, in the following order
- Spatial contrast
- Spatial/temporal uniformity
- IR clear-sky composite consistency test
- VIS clear-sky composite consistency test
- Artificial intelligence classification

8. Determine final result of mask tests for each pixel.

The databases are examined for elevation characteristics and ecosystem type. A separate database is
examined for probability of snow. The snow probability index is set high if either the NOAA Snow
Data Product is positive or if snow was indicated on the previous clear day. If the previous day was not
clear, then local regions of the same ecosystem type are examined. If these regions also were cloudy on
the previous day, then the pixel and its local regions are examined for two additional prior days. If these
tests fail, then the snow flag is set to a low value. This test is seasonal; it is not run for tropical regions
(except for regions of high elevation) or during summer months. NMC analyses also are examined.
Prior days with surface temperatures > 50°C decrease the snow probability index values. On the other
hand, during the late fall to early spring in the mid- to high-latitudes, cloud cover on the previous day
coupled with surface temperatures in the NMC surface analysis increases the snow probability index.
Note that this index has values between 0 and 100. As explained in section 4.2.3., artificial intelligence
and texture analysis are applied to regions which are uncertain. The fuzzy logic algorithm directly uses
the snow probability index values.

4.1.5.4. Cloud Mask for Nighttime Ocean and Land Scenes

These algorithms are applied to all surface regions between 60°N and 60°S, for solar zenith angles
greater than 85°, and for daytime pixels labeled as having sun glint, vegetation hot spots, or low illumi-
nation angles. Spatial coherence is used over oceans and over land areas of the same ecosystem.

1. The initial step is to label each pixel with ecosystem, elevation, surface characteristics, snow/ice,
and land/water percentage. If snow-covered, set flag.

2. Retrieve short-term clear night (within last 72 hours) and radiance values for channels 3, 4, and 5.
If there are no short-term clear night data available, use longer-term values. If the subregion is

γcos θ θo φcossinsin θ θocoscos–=
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snow-covered, rugged terrain, coastline, or under the heading of other special cases, pass the sub-
region to automated classification algorithms.

3. Apply spatial coherence to large-scale 256-km by 256-km regions, noting that the algorithm will
be applied only to areas having the same ecosystem (e.g. water or ocean).

4. Apply masking tests in the following order.
5. Apply masking tests to individual pixels in the following order

- Imager pixel IR channel threshold tests
- Imager pixel NIR-IR brightness temperature difference threshold tests

6. Apply masking tests to pixel arrays, or tiles, in the following order
- Spatial contrast
- Spatial/temporal uniformity
- IR clear-sky composite consistency test
- Artificial intelligence classification

4.1.5.5. Daytime Polar Region Cloud Mask Analysis

A daytime polar region cloud mask algorithm is currently under development. The daytime polar
scene classification system currently separates pixel subarrays into the following classes:

1. Water
2. Solid sea ice or snow-covered land
3. Broken sea ice
4. Snow-covered mountains (or regions of high relief)
5. Stratus-type clouds over water
6. Stratus-type cloud over ice
7. Cirrus clouds over ice
8. Cumulus clouds over water
9. Multilayer cloudiness

10. Nonsnow-covered land

These classes need to be expanded somewhat to include, for example, cirrus clouds over water. To
date, high accuracies are achieved for pure classes. However, additional work is in progress to extend
the classes and to include a broader range of textural measures.

The current algorithm is applied poleward of 60°N and 60°S and is based upon Ebert (1987, 1989),
Key and Barry (1989), Welch et al. (1992) and Tovinkere et al. (1993). The following eight spectral and
textural measures were used in a polar scene identification study by Tovinkere et al. (1993):

1. ρ1 − ρ2
2. Low 3
3. ρ3/ρ1
4. Mean ASM 3
5. Mean 1
6. Mean 4
7. Max Ent1
8. Max Ent4

Measure 1. ρ1 − ρ2: The reflectance difference between channels 1 and 2. This measure is positive
for classes with snow and ice surfaces and negative for land. The reflectance difference ρ1 − ρ2
tends to have a positive value for the cloud classes and for water and snow and negative for
land.

Measure 2. Low 3: This is the percentage of pixels in channel 3 that have a reflectance less than
10%. This is the greatest for water and snow and least for stratus and stratocumulus cloudiness.
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Measure 3. ρ3/ρ1: The mean reflectances of channels 1 and 3 are computed, and the ratio is calcu-
lated using these values. This value is low for ice covered surfaces and cirrus cloudiness.

Measure 4. Mean ASM3: Angular second moment of channel 3. This textural feature is a measure
of homogeneity in the scene. This measure is smallest when all the gray levels occur with equal
probability.

Measure 5. Mean 1: This is the mean reflectance of channel 1.
Measure 6. Mean 4: This is the mean brightness temperature computed from channel 4.
Measure 7. Max Ent1: This is a measure of disorder in the scene. The entropy measure is calculated

from channel 1. It has low values for water, solid sea ice, and land.
Measure 8. Max Ent4: This is the entropy measure of the region in channel 4. Max Ent4 has low

values for classes which have display distinct scales of organization and relatively uniform
temperatures.

These features are defined for daylight (θo < 85°). Also, the pixel arrays are defined over a single eco-
system type. The pixel array may be modified to suit individual regions, by altering the size the array to
be larger or smaller and by altering the shape of the region as necessary. If a single ecosystem type can-
not be defined for a given region, then a broader categorization of forest, tundra, etc., is used.

The Navy weekly 18-km sea ice product is utilized to define the marginal ice zone. Oceanic regions
within 100 km of the ice edge are labeled as probably broken sea ice. Regions further poleward are
labeled with distance as more and more probable of being solid sea ice. Regions in the opposite direc-
tion are labeled with distance as less and less probable of being broken sea ice.

The NMC surface temperature analysis is used for consistency checks. For example, high surface
temperatures (>273 K) indicate ice melt, probable melt ponds, and lower ice/snow reflectivities. On the
other hand, very low surface temperatures generally are consistent with the lack of open water and with
higher surface reflectivities. Such low surface temperatures also mean that the various thermal tests
need to be applied over more restricted domains.

Artificial intelligence classifiers may be applied from the outset to provide the context of the local
region. Once the surface is known (water, solid sea ice or snow-covered land, broken sea ice, land,
patchy snow over land, frozen lakes and rivers) and once the basic cloud cover is known (stratus, stra-
tocumulus, cumulus, cirrus, or multilayer), then the previously defined tests may be used at the pixel
level. Somewhat different sets of the tests described previously are used for each of the various
scenarios.

In the near future (F.Y. 95), we will be deriving and applying new polar cloud mask algorithms. The
polar algorithm will be exercised using both AVHRR 1-km and 4-km data over both poles. The final
Version 1 algorithm is expected to be modified extensively over the next year.

4.1.6. Short-Term and Long-Term Clear-Sky Composite Maps

4.1.6.1. ISCCP Clear-Sky Composite

The ISCCP developed clear-sky reflectance and temperature composites to detect clouds over a
given 32-km square area by comparing the pixel radiances to the clear-sky composite values with some
added thresholds (Rossow and Garder 1993). These composites are based on the observation that varia-
tions in VIS clear reflectances usually are smaller in time than in space, especially over land. Variations
of surface VIS reflectances generally are smaller than variations of cloud reflectances. Therefore, it is
assumed that the characteristic shape of the darker part of the VIS radiance distribution is at most
weakly dependent upon surface type (Seze and Rossow 1991a, b). The minimum reflectance value for
channel 1 is used to estimate clear values. Corrections to the minimum values are inferred from the
shapes of the visible reflectance distribution associated with different surface types.
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Rossow and Garder (1993) classify the surface into nine types depending on the time scale and
magnitude of the reflectance variations (see Tables 5 and 6). The clear sky reflectance values for land
and ocean regions whose surface characteristics vary the most rapidly are estimated using short-term
values of ρmin such that ρcs = ρmin(ST) + DEL2. Sparsely vegetated surfaces generally exhibit more
spatial variability than heavily vegetated surfaces (cf. Matthews and Rossow 1987), but are also gener-
ally less cloudy. For these, ρcs = ρmin(LT) + DEL2. Vegetated areas show less small-scale spatial vari-
ability. They also tend to be more uniform from one geographic location to another. For vegetated
regions, the clear-sky reflectance is determined by first calculating ρcs = ρmin(ST) + DEL2. Then the
individual pixel reflectance values within each latitude zone are compared to the distribution of ρcs val-
ues for the same ecosystem type; they are required to be within DEL1 of the distribution mode value,
ρmode.

Similar assumptions are used for the determination of Tcs fields. The time scales of VIS and IR
variability for different classes and the associated ISCCP thresholds are shown in Tables 4.1-9
through 4.1-12.

Table 4.1-9. Time Scales of Variability for Different
Surface Types for Visible Channel

VIS classes Short term (ST) Long term (LT)

Ocean - 30 days
Lakes - 15 days
Polar ocean (open water) - 15 days
Ice-covered water 5 days -
Forests, woodlands, shrublands - 30 days
Grasslands, tundra - 30 days
Arid vegetation, deserts - 30 days
Polar land (snow free) - 15 days
Snow- or ice-covered land 5 days -

Table 4.1-10. Values Used in VIS Clear-Sky Composite Logic
(after Rossow and Garder 1993); VIS Threshold Values

are in Percent Reflectance

IR surface types DEL1 DEL2

Ocean, near-coastal, lakes 3.0 1.5
Forests, woodlands, shrubland 6.0 3.5
Grasslands, tundra - 3.5
Arid vegetation, deserts - 3.5
Ice-covered water - 5.0
Ice- or snow-covered land - 5.0

Table 4.1-11. Time Scales of Variability for Different Surface Types for
IR Channels (after Rossow and Garder 1993)

IR classes Short term (ST) Long Term (LT)

Open ocean 15 days 30 days
Near-coastal ocean and lakes 5 days 15 days
Polar seas and ice-covered water 5 days 15 days
Land 5 days 15 days
High and rough topography land 5 days 15 days
Ice- or snow-covered land 5 days 15 days
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One of the primary difficulties in using the ISCCP approach as currently formulated is the angular
dependence of clear-sky reflectance. Although cross-track scanning Sun-synchronous satellites such as
the NOAA-AVHRR repeat the angular viewing conditions on a regular cycle, the solar zenith angle
slowly varies and the cloudiness conditions may prevent the determination of clear-sky reflectance at
some points in cycle. The ISCCP relies on an empirical bidirectional reflectance model for clear-sky
ocean reflectance (Minnis and Harrison 1984a). Thus, over ocean, the angular problems are minimized.
Over land, the ISCCP assumes isotropic clear-sky reflectance, although it has been established that the
anisotropy of land scenes is significant (e.g., Kriebel 1978; Tarpley 1979; Minnis and Harrison 1984c;
Suttles et al. 1988). For θo < 85°, the vegetated land clear-sky anisotropic reflectance factor R(k, θo, θ,
φ), where k is a surface type that can vary from 0.6 to 1.6 (e.g., Suttles et al. 1988) for θ < 70°. Thus,
there is the potential for clear-sky reflectance errors as great as 300% if one assumes that the measure-
ment taken at a particular set of viewing conditions represents the reflectance at all viewing angles for a
given value of θo. Systematic changes of albedo with θo are also not considered for land surfaces. The
reflectance anisotropy over snow and desert scenes is generally not as great as that over vegetated sur-
faces, but the absolute changes in reflectance are as great because of the higher albedos over these
surfaces.

The CERES processing will begin with a set of global clear-sky radiances matched to the Navy
10-min database at a 3-hourly resolution. Thus, a relatively high-resolution clear-sky field is required.
The clear-sky radiance maps currently available from the ISCCP are the C1 datasets that have a 250-km
and 3-hour resolution and that lack the anisotropy corrections noted above. The following processing
steps using the ISCCP data are applied to historical AVHRR data to obtain the clear-sky radiances at the
higher spatial resolution and to account for reflectance anisotropy.

From the ISCCP C1 data, the clear-sky reflectance at a given day d, synoptic hour h, nominal
regional latitude ΘC1, and longitude ΦC1 is ρcsC1(θo, θ, φ, ΘC1, ΦC1, h, d). The corresponding clear-sky
albedo is

(4.1-47)

where the value of R is taken from Minnis and Harrison (1984a) for vegetated land and from Suttles
et al. (1988) for snow and desert. Over ocean, αcsC1 is estimated using an updated version of the clear
ocean bidirectional reflectance model of Minnis and Harrison (1984a). The updated version includes
calibrated data from more angles than the original model. The value of αcsC1(ocean, θo = 0) = 0.045.
The standard deviation of αcsC1 is σαC1(k, θo, θ, ΘC1, ΦC1, h, d). For mixed land-water regions, the
reflectance for the land portion is, leaving off the dependence on the parameters θo, θ, φ, ΘC1, ΦC1, h,
and d:

(4.1-48)

Table 4.1-12. Test Values Used in IR Composite Logic (after Rossow and Garder 1993);
IR Values are in Kelvins

IR surface types DEL1 DEL2 DEL3

Ocean 2.0 2.0 2.5
Near-coastal ocean, lakes 3.0 3.0 4.0
Ice-covered water 3.0 3.0 4.0
Land 6.0 5.0 8.0
High and rough topography 9.0 7.0 11.0
Ice- or snow-covered land 9.0 7.0 11.0

αcsC1 k θo ΘC1 h d, , , ,( )
ρcsC1 k θo θ φ Θ, , C1 ΦC1 h d, , , , ,( )

R k θo θ φ, , ,( )
-----------------------------------------------------------------------------------=

ρcsC1 land( )
ρcsC1 1 f land–( )ρcsC1 ocean( )–[ ]

f land
-------------------------------------------------------------------------------------=
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where fland is the land fraction in the C1 region. The standard deviation of αcsC1 is σαC1(k, θo, θ, ΘC1,
ΦC1, h, d). Average values of these parameters, <αcsC1(k, ΘC1, ΦC1, h)> and <σαC1(k, ΘC1, ΦC1, h)>
are computed for each region and month.

The corresponding ISCCP clear-sky, 11-µm temperatures and their standard deviations are TcsC1(k,
ΘC1, ΦC1, h, d) and σTC1(k, ΘC1, ΦC1, h, d), respectively. Monthly mean values, <TcsC1(k, ΘC1, ΦC1,
h)> and <σTC(k, ΘC1, ΦC1, h)>, are also computed for these parameters. All 10-min regions falling
within the 250-km C1 region are initially assigned the clear-sky radiances for the ISCCP region if the
C1 region is all land or water. If the C1 region is mixed, the 10-min boxes that are entirely water are
assigned the empirical model values for ocean albedo and the land boxes are given the land clear-sky
albedos computed from (4.1-48) and (4.1-47). The coastal boxes retain the nominal C1 albedo. The C1
temperature is assigned to the 10-min box regardless of the geotype. These mean values constitute the
starting point for the development of the high-resolution clear-sky radiance set.

To derive the high-resolution dataset, AVHRR GAC data are analyzed to determine if the pixels
belonging to a particular 10-min box are clear. During a given AVHRR orbit at time t, the reflectance ρ,
and 11-µm brightness temperature TB4 of all pixels located within a given 10-min box are compared to
the monthly mean dataset. The pixels are assumed to be clear if, again leaving off the dependence on the
parameters k, θo, θ, φ, ΘC1, ΦC1, h, and d:

(4.1-49)

and

(4.1-50)

where h < t < h + 1, and

(4.1-51)

The last term in (4.1-51) is the albedo at time t found by linearly interpolating the C1 albedos in
time. First, the albedos are extended to θo using the directional reflectance models derived from the
results of Minnis and Harrison (1984a, c) based on the mean θo at the synoptic times. This approach is
the same employed by the ERBE time-space averaging subsystem (see Brooks et al. 1986). Simple lin-
ear inter-polation is used to determine the expected standard deviation. When albedos do not exist at h
or h + 1, the available albedo is extrapolated to t using the directional reflectance models. Over snow
scenes, additional tests using the TB3 − TB4 differences supplement the standard clear-sky tests to insure
that the scene is cloud free. The expected clear-sky temperature, TcsC1(k, θo, ΘC1, ΦC1, t) and its stan-
dard deviation are interpolated using linear interpolation.

For some areas, such as deserts, the surface emittance at 3.7 µm will not be unity. When the surface
emittance is less than unity, the task of determining the expected clear-sky 3.7-µm brightness tempera-
ture will be difficult. For this reason, we will develop a surface emittance map at 3.7 µm using nighttime
data so that there is no solar contribution. The effective surface emittance ε3s for channel 3 is also esti-
mated for each 10-min box by first correcting the nighttime clear-sky values of TB3 and TB4 for water
vapor attenuation. Assuming that the clear-sky downwelling radiance is zero for channel 3 and ε4s = 1,
then ε3ss = [B3(TB4s) − B3(TB3s)] / B3(TB4s), where the subscript s indicates values at the surface.

The pixel values selected as clear are then analyzed as in Minnis et al. (1987) to determine an esti-
mate of ρcs and Tcs for the 10-min box and new values for their standard deviations. The procedure is
reversed to estimate the clear albedo and temperature at the nearest synoptic hour. These new values
plus the mean channel-3 emittances are then used to construct a new clear-sky map. The results from
different days at a given h are averaged to yield the new detailed clear-sky fields that will become the
initial CERES clear-sky radiance fields.

ρ t( ) ρcsC1 t( )< 2σαC1+

T B4 T csC1 2σTC1–>

ρcsC1 k θo θ φ Θ, , C1 ΦC1 t, , , ,( ) R k θo θ φ, , ,( )αcsC1 k θo ΘC1 ΦC1 t, , , ,( )=
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Examples of applying this procedure to a day of October 1986 NOAA-9 AVHRR data are shown in
Figs. 4.1-7–4.1-10. The initial clear-sky reflectance field based solely on the ISCCP land “albedos” and
the ocean reflectance model have a somewhat blocky appearance due to the low-resolution of the C1
dataset. The scattering of some of the data values near the orbit overlaps is due to overwriting of previ-
ous results by pixels in the following orbit. The ocean model produces a realistic pattern of reflectance
including the distinct sun glint areas. Application of the clear-sky procedure yields a somewhat finer
resolution of various features such as the Arabian Peninsula and the Pampas region in South America.
Bright areas of sun glint appear in the middle of the predicted sun glint during some orbits. Changes did
not occur in many areas because of clouds. The clear-sky temperature fields (Figs. 4.1-9 and 4.1-10)
show even more dramatic changes because of more local variability, especially over land.

The procedure used to produce the results in Figures 4.1-8 and 4.1.10 will be applied to the AVHRR
data for months during four different seasons. Over some particularly clear areas, the resulting means
for a given hour will be examined closely to determine the sensitivity of the technique to the values of
R. New anisotropic reflectance and thermal infrared limb-darkening models will be tested as they are
developed. This methodology will be continuously refined prior to the TRMM launch.

The logic employed here will be combined with the other clear-sky detection methods and with a
modified version of the ISCCP approach to provide updates of clear-sky radiances during CERES on
the time scales suggested in the ISCCP method. The CERES clear-sky composite relies on high-
resolution data applied to a higher-resolution grid than that employed by the ISCCP. Thus, accounting
for local variability becomes very important. The ISCCP thresholds that bound the clear-sky domain for
a particular surface category will be used as guidelines and as default values for the CERES clear-sky
composite development. The local standard deviations in the clear-sky radiances computed using the
above analysis procedure on preflight AVHRR data will be used to set the thresholds for cloud detection
during CERES.

4.1.7. Version 2: Future Directions

4.1.7.1. Detection of Cloud Shadows

The detection of cloud shadows is a problem that has not been addressed adequately in the litera-
ture. The following strategy is the first method we will employ to begin determining cloud shadows.
The following discussion is only meant to provide an idea of the approach. Further work in this area has
been initiated on this problem.

A 3 × 3 median filter first is applied to reduce noise in the image. It has the following desirable
properties: (1) it does not affect the presence or position of the shadow edges, (2) no new brightness val-
ues are created, and (3) performance of the Laplace of Gaussian (LOG) zero crossing edge detection
algorithm is improved.

4.1.7.1.1. Oceans. Histogram equalization of the AVHRR channel 1 image is made first. The histo-
gram equalization transform produces a histogram that is quasi-uniform on the average. It is based upon
the discrete cumulative histogram with quantized brightness values. The dark values on the histogram
equalized image are those due to cloud shadows.

4.1.7.1.2. Land. The algorithm over land is more complex because shadows may fall upon both land
surfaces of varying reflectances as well as water surfaces such as lakes, rivers, and marshes. The appli-
cation of a Laplacian filter to a Gaussian filter image is made first. This operation aids in the recognition
of shadow and cloud regions. Edge locations are determined by the zero-crossings of the LOG-filtered
image. Details are given in Berendes et al. (1992). Many more edges are produced than just cloud and
shadow ones. These are due to background variations and to noise.
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To isolate the relevant shadow (or cloud) edge pixels, a thresholding procedure is used which is
based on a restricted histogram, called the Max/Min histogram. This is constructed from the 3 × 3
neighborhood surrounding the potential edge pixels. The intention is to capture the modes of the transi-
tion pixels generating the edge elements. Generally, there are three distinctive peaks, due to (1) shad-
ows, (2) background, and (3) clouds.

A weighted averaging of the peak values of the Max/Min histogram is used to determine the appro-
priate threshold between shadow and background (and between cloud and background). This is accom-
plished by taking into account the size of the distributions. The procedure is iterated to convergence.
When water is present in the scene, then a four-mode Max/Min histogram is produced. The same itera-
tive procedure is used to eliminate the background pixels, retaining both shadow and water pixels. The
ancillary percent water data set is used to identify probable regions of water.

4.1.7.2. Nighttime Polar Classification

Nighttime polar cloud/surface classification is an extremely difficult problem. Yamanouchi et al.
(1987) describe a nighttime polar (Antarctic) cloud/surface discrimination algorithm based upon bright-
ness temperature differences between the AVHRR 3.7- and 10.8-µm channels and between the 10.8-
and 12-µm channels. Their cloud/surface discrimination algorithm was more effective over water sur-
faces than over inland snow-covered surfaces. A number of problems arose over inland snow-covered
surfaces. First, the temperature contrast between the cloud and snow surface became especially small,
leading to a small brightness temperature difference between the two infrared channels. Second, the
AVHRR channels are not well-calibrated at extremely low temperatures (<200 K). As noted in their
study, the temperature resolution of channels 4 (10.8-µm) and 5 (12-µm) are approximately 0.6 K at
180 K, while the temperature resolution of channel 3 (3.7-µm) is about 3.5 K at 220 K, and only 7.5 K
at 210 K. Therefore, the channel 3 data are not generally useful for cloud detection at the low tempera-
tures expected at the Antarctic. Additionally, the AVHRR data have a digitization problem at extremely
low temperatures due to mechanical noise and also because of the nonlinear temperature dependence of
the Planck function. The brightness temperature differences between AVHRR channels 4 and 5 offer
the most hope for discriminating clouds from a snow- or ice-covered surface. Much further work needs
to be done in this area.
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